Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(8): 1730-1737, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37531094

RESUMO

Trimming of host glycans is a mechanism that is broadly employed by both commensal and pathogenic microflora to enable colonization. Host glycan trimming by the opportunistic Gram-positive bacterium Streptococcus pneumoniae has been demonstrated to be an important mechanism of virulence. While S. pneumoniae employs a multitude of glycan processing enzymes, the exo-mannosidase SpGH92 has been shown to be an important virulence factor. Accordingly, SpGH92 is hypothesized to be a target for much-needed new treatments of S. pneumoniae infection. Here we report the synthesis of 4-methylumbelliferyl α-d-mannopyranosyl-(1→2)-ß-d-mannopyranoside (Manα1,2Manß-4MU) as a fluorogenic disaccharide substrate and development of an assay for SpGH92 that overcomes its requirement for +1 binding site occupancy. We miniaturize our in vitro assay and apply it to a high-throughput screen of >65 000 compounds, identifying a single inhibitory chemotype, LIPS-343. We further show that Manα1,2Manß-4MU is also a substrate of the human Golgi-localized α-mannosidase MAN1A1, suggesting that this substrate should be useful for assessing the activity of this and other mammalian α-mannosidases.


Assuntos
Dissacarídeos , Streptococcus pneumoniae , Animais , Humanos , alfa-Manosidase/metabolismo , Fatores de Virulência , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Polissacarídeos/metabolismo , Mamíferos/metabolismo
2.
PLoS Biol ; 20(9): e3001764, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129849

RESUMO

Primary familial brain calcification (PFBC) is characterised by abnormal deposits of calcium phosphate within various regions of the brain that are associated with severe cognitive impairments, psychiatric conditions, and movement disorders. Recent studies in diverse populations have shown a link between mutations in myogenesis-regulating glycosidase (MYORG) and the development of this disease. MYORG is a member of glycoside hydrolase (GH) family 31 (GH31) and, like the other mammalian GH31 enzyme α-glucosidase II, this enzyme is found in the lumen of the endoplasmic reticulum (ER). Though presumed to act as an α-glucosidase due to its localization and sequence relatedness to α-glucosidase II, MYORG has never been shown to exhibit catalytic activity. Here, we show that MYORG is an α-galactosidase and present the high-resolution crystal structure of MYORG in complex with substrate and inhibitor. Using these structures, we map detrimental mutations that are associated with MYORG-associated brain calcification and define how these mutations may drive disease progression through loss of enzymatic activity. Finally, we also detail the thermal stabilisation of MYORG afforded by a clinically approved small molecule ligand, opening the possibility of using pharmacological chaperones to enhance the activity of mutant forms of MYORG.


Assuntos
Encefalopatias , Glicosídeo Hidrolases , Animais , Encéfalo/metabolismo , Encefalopatias/genética , Encefalopatias/metabolismo , Glicosídeo Hidrolases/genética , Humanos , Ligantes , Mamíferos/metabolismo , Desenvolvimento Muscular , Linhagem , Especificidade por Substrato , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , alfa-Glucosidases/metabolismo
3.
J Biol Chem ; 296: 100528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33711341

RESUMO

The helical morphology of Campylobacter jejuni, a bacterium involved in host gut colonization and pathogenesis in humans, is determined by the structure of the peptidoglycan (PG) layer. This structure is dictated by trimming of peptide stems by the LD-carboxypeptidase Pgp2 within the periplasm. The interaction interface between Pgp2 and PG to select sites for peptide trimming is unknown. We determined a 1.6 Å resolution crystal structure of Pgp2, which contains a conserved LD-carboxypeptidase domain and a previously uncharacterized domain with an NTF2-like fold (NTF2). We identified a pocket in the NTF2 domain formed by conserved residues and located ∼40 Å from the LD-carboxypeptidase active site. Expression of pgp2 in trans with substitutions of charged (Lys257, Lys307, Glu324) and hydrophobic residues (Phe242 and Tyr233) within the pocket did not restore helical morphology to a pgp2 deletion strain. Muropeptide analysis indicated a decrease of murotripeptides in the deletion strain expressing these mutants, suggesting reduced Pgp2 catalytic activity. Pgp2 but not the K307A mutant was pulled down by C. jejuni Δpgp2 PG sacculi, supporting a role for the pocket in PG binding. NMR spectroscopy was used to define the interaction interfaces of Pgp2 with several PG fragments, which bound to the active site within the LD-carboxypeptidase domain and the pocket of the NTF2 domain. We propose a model for Pgp2 binding to PG strands involving both the LD-carboxypeptidase domain and the accessory NTF2 domain to induce a helical cell shape.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/citologia , Carboxipeptidases/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Peptidoglicano/metabolismo , Campylobacter jejuni/metabolismo , Carboxipeptidases/química , Domínio Catalítico , Humanos , Conformação Proteica
4.
Protein Sci ; 28(3): 620-632, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30537432

RESUMO

T4 phage lysozyme (T4L) is an enzyme that cleaves bacterial cell wall peptidoglycan. Remarkably, the single substitution of the active site Thr26 to a His (T26H) converts T4L from an inverting to a retaining glycoside hydrolase with transglycosylase activity. It has been proposed that T26H-T4L follows a double displacement mechanism with His26 serving as a nucleophile to form a covalent glycosyl-enzyme intermediate (Kuroki et al., PNAS 1999; 96:8949-8954). To gain further insights into this or alternative mechanisms, we used NMR spectroscopy to measure the acid dissociation constants (pKa values) and/or define the ionization states of the Asp, Glu, His, and Arg residues in the T4L mutant. Most notably, the pKa value of the putative nucleophile His26 is 6.8 ± 0.1, whereas that of the general acid Glu11 is 4.7 ± 0.1. If the proposed mechanism holds true, then T26H-T4L follows a reverse protonation pathway in which only a minor population of the free enzyme is in its catalytically competent ionization state with His26 deprotonated and Glu11 protonated. Our studies also confirm that all arginines in T26H-T4L, including the active site Arg145, are positively charged under neutral pH conditions. BRIEF STATEMENT: The replacement of a single amino acid changes T4 lysozyme from an inverting to a retaining glycoside hydrolase. Using NMR spectroscopy, we measured the pKa values of the ionizable residues in the active site of this mutant enzyme. Along with previously reported data, these results provide important constraints for understanding the catalytic mechanisms by which the wild-type and mutant form of T4 lysozyme cleave bacterial peptidoglycan.


Assuntos
Bacteriófago T4/metabolismo , Glicosídeo Hidrolases/metabolismo , Muramidase/metabolismo , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Bacteriófago T4/química , Bacteriófago T4/genética , Domínio Catalítico , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Muramidase/química , Muramidase/genética , Ressonância Magnética Nuclear Biomolecular , Peptidoglicano/metabolismo , Mutação Puntual , Prótons , Proteínas Virais/química , Proteínas Virais/genética
5.
Protein Sci ; 27(9): 1680-1691, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30095200

RESUMO

The pathogenic bacterium Salmonella enterica serovar Typhimurium utilizes two type III secretion systems (T3SS) to inject effector proteins into target cells upon infection. The T3SS secretion apparatus (the injectisome) is a large macromolecular assembly composed of over twenty proteins, many in highly oligomeric states. A sub-structure of the injectisome, termed the basal body, spans both membranes and the periplasmic space of the bacterium. It is primarily composed of three integral membranes proteins, InvG, PrgH, and PrgK, that form ring structures through which components are secreted. In particular, PrgK possesses a periplasmic region consisting of two globular domains joined by a linker polypeptide. We showed previously that in isolation, this region adopts two distinct conformations, of with only one is observed in the assembled basal body complex. Here, using NMR spectroscopy, we further characterize these two conformations. In particular, we demonstrate that the interaction of the linker region with the first globular domain, as found in the intact basal body, is dependent upon the cis conformation of the Leu77-Pro78 peptide. Furthermore, this interaction is pH-dependent due to coupling with hydrogen bond formation between Tyr75 and His42 in its neutral Nδ1 H tautomeric form. This pH-dependent interaction may play a role in the regulation of the secretion apparatus disassembly in the context of bacterial infection.


Assuntos
Salmonella enterica/química , Sistemas de Secreção Tipo III/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica
6.
PLoS One ; 11(10): e0164424, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27749894

RESUMO

8-oxoguanine is one of the most abundant and impactful oxidative DNA lesions. However, the reasons underlying its effects, especially those not directly explained by the altered base pairing ability, are poorly understood. We report the effect of the lesion on the action of EcoRI, a widely used restriction endonuclease. Introduction of 8-oxoguanine inside, or adjacent to, the GAATTC recognition site embedded within the Drew-Dickerson dodecamer sequence notably reduced the EcoRI activity. Solution NMR revealed that 8-oxoguanine in the DNA duplex causes substantial alterations in the sugar-phosphate backbone conformation, inducing a BI→BII transition. Moreover, molecular dynamics of the complex suggested that 8-oxoguanine, although does not disrupt the sequence-specific contacts formed by the enzyme with DNA, shifts the distribution of BI/BII backbone conformers. Based on our data, we propose that the disruption of enzymatic cleavage can be linked with the altered backbone conformation and dynamics in the free oxidized DNA substrate and, possibly, at the protein-DNA interface.


Assuntos
DNA/metabolismo , Desoxirribonuclease EcoRI/metabolismo , Guanina/análogos & derivados , Sequência de Bases , Sítios de Ligação , DNA/química , Clivagem do DNA , Dano ao DNA , Guanina/química , Guanina/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Especificidade por Substrato
7.
J Biomol NMR ; 58(1): 17-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24306180

RESUMO

Hydroxyl protons on serine and threonine residues are not well characterized in protein structures determined by both NMR spectroscopy and X-ray crystallography. In the case of NMR spectroscopy, this is in large part because hydroxyl proton signals are usually hidden under crowded regions of (1)H-NMR spectra and remain undetected by conventional heteronuclear correlation approaches that rely on strong one-bond (1)H-(15)N or (1)H-(13)C couplings. However, by filtering against protons directly bonded to (13)C or (15)N nuclei, signals from slowly-exchanging hydroxyls can be observed in the (1)H-NMR spectrum of a uniformly (13)C/(15)N-labeled protein. Here we demonstrate the use of a simple selective labeling scheme in combination with long-range heteronuclear scalar correlation experiments as an easy and relatively inexpensive way to detect and assign these hydroxyl proton signals. Using auxtrophic Escherichia coli strains, we produced Bacillus circulans xylanase (BcX) labeled with (13)C/(15)N-serine or (13)C/(15)N-threonine. Signals from two serine and three threonine hydroxyls in these protein samples were readily observed via (3)JC-OH couplings in long-range (13)C-HSQC spectra. These scalar couplings (~5-7 Hz) were measured in a sample of uniformly (13)C/(15)N-labeled BcX using a quantitative (13)C/(15)N-filtered spin-echo difference experiment. In a similar approach, the threonine and serine hydroxyl hydrogen exchange kinetics were measured using a (13)C/(15)N-filtered CLEANEX-PM pulse sequence. Collectively, these experiments provide insights into the structural and dynamic properties of several serine and threonine hydroxyls within this model protein.


Assuntos
Bacillus/enzimologia , Endo-1,4-beta-Xilanases/química , Ressonância Magnética Nuclear Biomolecular , Prótons , Serina/química , Treonina/química , Concentração de Íons de Hidrogênio , Hidroxilação , Cinética , Modelos Moleculares
8.
Biochemistry ; 52(45): 7890-900, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24070253

RESUMO

Villin is a gelsolin-like cytoskeleton regulator localized in the brush border at the apical end of epithelial cells. Villin regulates microvilli by bundling F-actin at low calcium levels and severing it at high calcium levels. The villin polypeptide consists of six gelsolin-like repeats (V1-V6) and the unique, actin binding C-terminal headpiece domain (HP). Villin modular fragment V6-HP requires calcium to stay monomeric and bundle F-actin. Our data show that isolated V6 is monomeric and does not bind F-actin at any level of calcium. We propose that the 40-residue unfolded V6-to-HP linker can be a key regulatory element in villin's functions such as its interactions with F-actin. Here we report a calcium-bound solution nuclear magnetic resonance (NMR) structure of V6, which has a gelsolin-like fold with the long α-helix in the extended conformation. Intrinsic tryptophan fluorescence quenching reveals two-Kd calcium binding in V6 (Kd1 of 22 µM and Kd2 of 2.8 mM). According to our NMR data, the conformation of V6 responds the most to micromolar calcium. We show that the long α-helix and the adjacent residues form the calcium-sensitive elements in V6. These observations are consistent with the calcium activation of F-actin severing by villin analogous to the gelsolin helix-straightening mechanism.


Assuntos
Cálcio/química , Gelsolina/química , Proteínas dos Microfilamentos/química , Actinas/química , Actinas/metabolismo , Cromatografia em Gel , Gelsolina/metabolismo , Vetores Genéticos , Humanos , Espectroscopia de Ressonância Magnética , Proteínas dos Microfilamentos/metabolismo , Ligação Proteica
9.
Biochemistry ; 52(18): 3138-56, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23578322

RESUMO

The pH-dependent activity of wild-type Bacillus circulans xylanase (BcX) is set by the pK(a) values of its nucleophile Glu78 and general acid/base Glu172. Herein, we examined several strategies to manipulate these pK(a) values and thereby shift the pH(opt) at which BcX is optimally active. Altering the global charge of BcX through random succinylation had no significant effect. Mutation of residues near or within the active site of BcX, but not directly contacting the catalytic carboxyls, either had little effect or reduced its pH(opt), primarily by lowering the apparent pK(a) value of Glu78. However, mutations causing the largest pK(a) changes also impaired activity. Although not found as a general acid/base in naturally occurring xylanases, substitution of Glu172 with a His lowered the pH(opt) of BcX from 5.6 to 4.7 while retaining 8% activity toward a xylobioside substrate. Mutation of Asn35, which contacts Glu172, to either His or Glu also led to a reduction in pH(opt) by ~1.2 units. Detailed pK(a) measurements by NMR spectroscopy revealed that, despite the opposite charges of the introduced residues, both the N35H and N35E forms of BcX utilize a reverse protonation mechanism. In this mechanism, the pK(a) value of the general acid is lower than that of the nucleophile, and only a small population of enzyme is in a catalytically competent ionization state. However, overall activity is maintained due to the increased strength of the general acid. This study illustrates several routes for altering the pH-dependent properties of xylanases, while also providing valuable insights into complex protein electrostatics.


Assuntos
Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Modelos Moleculares , Mutagênese , Ressonância Magnética Nuclear Biomolecular
10.
J Biomol Struct Dyn ; 31(10): 1150-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23075227

RESUMO

Supervillin, the largest member of the villin/gelsolin family, is a cytoskeleton regulating, peripheral membrane protein. Supervillin increases cell motility and promotes invasive activity in tumors. Major cytoskeletal interactors, including filamentous actin and myosin II, bind within the unique supervillin amino terminus, amino acids 1-830. The structural features of this key region of the supervillin polypeptide are unknown. Here, we utilize circular dichroism and bioinformatics sequence analysis to demonstrate that the N-terminal part of supervillin forms an extended intrinsically disordered region (IDR). Our combined data indicate that the N-terminus of human and bovine supervillin sequences (positions 1-830) represents an IDR, which is the largest IDR known to date in the villin/gelsolin family. Moreover, this result suggests a potentially novel mechanism of regulation of myosin II and F-actin via the intrinsically disordered N-terminal region of hub protein supervillin.


Assuntos
Actinas/química , Sítios de Ligação , Proteínas dos Microfilamentos/química , Miosina Tipo II/química , Domínios e Motivos de Interação entre Proteínas , Actinas/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Animais , Bovinos , Galinhas , Humanos , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Miosina Tipo II/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...